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J. Phys. A: Math. Gen., Vol. 12, No. 9 ,  1979. Printed in Great Britain 

A time-dependent approach to the total scattering cross 
section 

W 0 Amrein and D B Pearson';:!: 
Department of Theoretical Physics, University of Geneva, 121 1 Geneva 4, Switzerland 

Received 3 1 October 1978 

Abstract. A method is developed, within the framework of time-dependent scattering 
theory, of proving finiteness at almost all energies of the total cross section for scattering by a 
wide class of potentials which roughly decrease more rapidly than r Y 2  at infinity, but which 
may have arbitrary local singularities. 

Explicit bounds are obtained for weighted averages of the cross section over a range of 
energies; in particular the estimates for high-energy behaviour of cross sections are almost 
the best possible. Our method applies to a wide class of Hamiltonians, including the 
non-relativistic Schrodinger Hamiltonian and the Hamiltonian of a relativistic particle in a 
potential, and may be extended to many-particle systems. For the Schrodinger equation, 
our  estimate of high-energy behaviour of cross sections with singular potentials is practically 
equivalent to the Froissart bound. There is a bound for potentials of finite range R which is 
independent of the coupling constant and of the form of the potential, and which, for large 
R, resembles the classical result. 

1. Introduction 

The most important quantity in scattering theory is the scattering cross section, which is 
directly related to experimental observation. It is therefore of considerable interest to 
look for methods enabling one to make rigorous statements about the cross section. 
Typically, such an approach includes two steps: (1) To obtain general expressions for 
the cross section in terms of the basic objects of the theory, which are the scattering 
operator in the Hilbert space approach or the non-normalisable solutions of the 
time-independent Schrodinger equation in the eigenfunction approach; (2) To use 
these expressions for deriving properties of the cross section under suitable assumptions 
on the interaction. In the Hilbert space approach, this means studying the properties of 
the on-shell S-matrix, or studying the behaviour at large distances of solutions of a 
partial differential equation in the eigenfunction approach. 

In the present paper we shall adopt the Hilbert space method, which we believe to be 
more fundamental and which is based on the physically transparent formulation of the 
asymptotic condition in the time-dependent form (Jauch 1958). Step 1, to express the 
cross section in terms of the scattering operator, is relatively easy to carry out. The 
derivation is essentially time-dependent and will be briefly described in 5 2. Step 2, the 
study of the scattering operator, is usually based on the equations of stationary state 
scattering theory, which are obtained as a consequence of the asymptotic condition. The 
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stationary method leads to quite detailed information about the cross section but has 
the drawback of being technically rather involved. It involves estimating the behaviour 
of the resolvent ( H  - z)-*  of the Hamiltonian H (or equivalently of the Green function 
G, (x, y)) as z approaches the positive real axis. These resolvent estimates are used to 
prove asymptotic completeness of the wave operators, which leads to an expression for 
the on-shell S-matrix in terms of the resolvent. This in turn can be used to prove, for 
example, the finiteness of the total cross section, its continuity as a function of the 
energy and to establish its high and low energy behaviour as well as properties of the 
scattering amplitude; see chapters 7,  10,12 and 16 of Amrein et a1 (1977, referred to as 
A ) .  

In view of the complexity of the stationary approach, we have developed a new and 
elementary method for deriving properties of the total cross section. This method not 
only dispenses with resolvent estimates but also does not involve any explicit expression 
for the on-shell S-matrix. The basic technical input are certain Cook-Hack type 
estimates in the Hilbert space 932 of Hilbert-Schmidt operators. Despite its simplicity 
this approach leads to interesting bounds on the cross section, both for the two-body 
and for the N-body problem. Our approach is in the spirit of a recent trend in scattering 
theory which is to work in the time-dependent framework (Amrein and Georgescu 
1973, Pearson 1975b, Deift and Sinion 1976, Enss 1977, Simon 1977, 1978, Sinha 
1977) rather than using the resolvent and which has led to the remarkable time- 
dependent proof by Enss (1978) of strong asymptotic completeness (including the 
absence of the singularly continuous spectrum of H )  in two-body potential scattering. It 
seems to us that these time-dependent arguments are more transparent than the 
stationary methods and will considerably simplify the teaching of scattering theory. 

We consider two-body potential scattering for potentials that satisfy 

for some M 3 0 and some U > 4. Notice that (1)  restricts only the behaviour of V near 
infinity and is verified for example if 1 V(x)( S  XI-^ for 1x1 3 M (0 < M < 03) and some 
p > 2. Only very weak hypotheses on the local behaviour of the potential will be made. 
In particular V may have an arbitrary singularity at x = 0. 

We denote by c+(A) the average over all initial directions of the total cross section at 
energy A ,  in the centre-of-mass frame. It will be shown that *(A) is locally integrable, 
i.e. that 

dA h (A  )a (A ) < 

for suitable weight functions h. This implies that 6 ( A )  is finite for almost all A ,  and that 
its average 

1 E t r  
- 
2 E  dA 6 ( A )  

over an interval of length 2~ around E is a continuous function of E. 
Explicit bounds on the integral in (2) in terms of h, of the weighted L2-norm (1) of 

the potential V and of the cut-off parameter M will be given. If the integral in (1)  is zero 
for some M, i.e. if V is of finite range, then the bound depends only on h and M, 
irrespective of the form of V for 1x1 < M and of the coupling constant. This is somewhat 
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analogous to the classical case where a(A) is equal to v M 2 ,  where M is the range of V 
(Newton 1966, chapter 5 ) .  By suitably choosing the high-energy behaviour of the 
weight function h, (2) also implies bounds on the high-energy behaviour of the total 
cross section. Roughly, these bounds are equivalent to 6 ( A )  < CA-'+' for each E > 0 if 
A4 = 0 in (1) and 6 ( h )  < CA for each E > 0 if the potential has strong local singularities. 

We are aware of the following papers dealing with the finiteness of the cross section 
for the two-body problem. Green and Lanford (1960) and Misra et a1 (1963), by 
estimating the phase shifts, derive finiteness for non-singular spherically-symmetric 
potentials which are O ( r - 2 - f  ), E > 0, at infinity; Villarroel (1970) obtains finiteness for 
essentially the same class of potentials as ours by working with the continuum 
eigenfunctions of the Hamiltonian and postulating a radiation condition. He also shows 
that a(A) = CO if V ( r )  = cr-'' near infinity with cc. S 2. Jauch and Sinha (1972) use trace 
methods to prove finiteness for non-singular potentials decreasing like r - 3 - f  ( E  > 0). 
Their approach is applicable to abstract scattering systems. Some further publications 
dealing with properties of the on-shell S-matrix are cited in the review by Martin and 
Misra (1974) on the Kato-Rosenblum lemma and its relation to high-energy scattering. 
An asymptotic expansion for 6 ( A )  for smooth potentials based on the eikonal approxi- 
mation was obtained by Hunziker (1963). 

This paper is organised as follows: In $ 2  we collect the necessary definitions from 
scattering theory and the properties of Hilbert-Schmidt operators that we shall need. In 
$ 3 we explain our approach and derive simple bounds on the total cross section. Section 
4 is devoted to an improvement of these bounds in order to obtain a stronger result on 
the high-energy behaviour of the cross section. Finally in pi 5 we mention some possible 
generalisations, including potential scattering with a relativistic free Hamiltonian, and 
point out a few more general properties of cross sections. We shall essentially follow the 
notation of Amrein et a1 (1977). 

2. Physical and mathematical preliminaries 

We consider the complex Hilbert space 2 = L2(R3) of all absolutely square-integrable 
functions defined on R3, with scalar product (f, g )  = d3xf:':(x)g(x) and norm llfll= 
d ( f ,  f). Let C be a measurable subset of R3. For f~ L2(R3), the number 

is interpreted as the probability (in the state f) of finding a particle localised in Z (i.e. 
multiplication by x k  is the kth component Q k  of the position operator, k = 1,2 ,3 . )  We 
also denote by ( $ f ) ( k )  or f ( k )  the value of the Fourier transform f of f at the point 
k E R3. Let HO be the usual free Hamiltonian, given formally by Ho = -A (we set the 
mass equal to f and h = 1). HO is the self-adjoint operator defined by 

(fiof)(k) = lkI2f(k) (3) 
with domain 

The total Hamiltonian H is a self-adjoint operator given formally as H = Ho + V. If 
the (real-valued) potential function V is bounded or square-integrable over R3, the 
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operator sum Ho + V, defined on D(Ho),  is self-adjoint. If V has strong local singulari- 
ties, H will be a self-adjoint extension of the operator - A  + V ( x ) ,  which is defined on 
some (not necessarily dense) linear subset A of L2(R3). 

The free time-evolution is given by the (strongly) continuous one-parameter group 
{U,}, - CO < t < CO, of unitary operators defined as U, = exp( - N o t ) .  Similarly the total 
evolution is given by a continuous unitary one-parameter group { V,}, where V, = 
exp( - iHt). The wave operators 0, and 0- are defined as ( A *  denoting the adjoint of 
A )  : 

( 5 )  

if the limits exist. They are strong limits in the Hilbert space, meaning for instance that 
for eachf E R,llR+f- V? UAI + 0 as t + + CO. R, are isometric operators, i.e. IlR,tfll= l f l l  
for all f ,  or equivalently RT0, = I. The scattering operator is defined as 

s = RTR-. (6 )  
For the physical interpretation of these operators, we refer to chapter 4 of Amrein et a1 
(1977). R, intertwine V, and U,, whereas S commutes with U,; i.e. for all real t 

a+ = s-lim V? U,, R- = s-lim VT U,, 
f - f m  1--m 

Vfsz, = 0 + U f ,  v,n- = &U, (7) 

US = SU,. (8) 

and 

In order to treat potentials with strong local singularities, the following observation 
is very useful. Let f be any state vector in L2(R3). If the time It( is very large, then the 
state Ut ,  obtained by letting f evolve under the free time evolution, has very small 
probability of being localised in a bounded region of configuration space. In other 
words free particles propagate to infinity as t + f 00. A precise formulation is as follows. 
Consider the ball SK = {xllxl S K } .  Then, for each fixed K < 00 and each t f ~  2 

lim J I(Ulf)(x)12 d3x = 0. 
t-*CO SK 

(9) 

More generally, let q5 be an infinitely differentiable function from R3 to R such that 
d(x) = 0 if 1x1 s K, q5(x) = 1 if 1x1 z K ' ,  where K and K ' >  K are any fixed positive 
numbers. We shall also denote by 4 the multiplication operator by the function d(x), 
i.e. (q5f)(x)  = q 5 ( x ) f ( x ) .  Then for each ~ E L ' ( R ~ )  

lim \ ~ ( I - ~ ) U J I ~ ~ =  lim J 1 1 - q 5 ( ~ ) 1 ~ 1 ( U ~ ~ ) ( x ) 1 * d ~ x  =o.  (10) 
,-.*a l + f 3 C  1xIs-K' 

For a proof, see Amrein et a1 (1977), remark 3.15 or corollary 7.8. 

lim VT(I -q5)Ur=OaSt+*m.  Hence 
It follows from (10) that llVT (I-q5)Urfll+O as t +  * C O  for each f~ X, i.e. s- 

This last equation allows one to eliminate completely the local part of the potential in 
certain considerations in scattering theory, for instance in the existence proof of the 
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wave operators. In fact the wave operators exist provided that V ( x )  verifies certain 
hypotheses for large 1x1 (e.g. tending to zero faster than a Coulomb potential), 
irrespective of its behaviour in a finite region. This result is due to Kupsch and Sandhas 
(1966) (it is also given in Amrein etal  (1977), proposition 8.31). An alternative proof 
of it will follow from our estimates in 5 3. 

Equation (8), which expresses the conservation of the kinetic energy in the scatter- 
ing process, allows one to diagonalise simultaneously the free Hamiltonian Ho (the 
infinitesimal generator of the group {U,} )  and the scattering operator S.  We first 
diagonalise Ho by introducing its spectral representation. For this one uses spherical 
polar coordinates (A,  U )  in momentum space, where A = k 2  and w = (t9,d) is a vector on 
the unit sphere S'2' = {k lk2  = 1). Let f e  L2(R3). For each fixed A > 0, let 

1 
f ~ ( w ) = - & A " ~ f ( y h W ) .  (12) 

A short computation using the Parseval identity in L2(R3) shows that 

where dw = - d cos 8 dd.  Hence for almost all A > 0, the functionf, (as a function of U )  

is square-integrable over S"', i.e. belongs to Xo=L2(S'2 ' ) .  The scalar product in 
L~(s" ' )  is 

r 

From the definition (3) of Ho, one sees that (Hof),  (a) = Af, (a). In other words the 
correspondence f ~ { f A } A > o  defines a unitary map Qo from L2(R3) onto L2((0 ,  CO); X o )  
(the Hilbert space of measurable functions from (0, CO) to X o  with norm (13)), such that 
QoHoQil is just multiplication by A (Amrein er a1 1977 p 225). 

Since S commutes with Ho, it must be diagonal in L2((0, CO); X o ) .  This means that 
for each A > 0, there exists an operator S(A) acting in X o  = L2(S'2')  such that for all A 

( Q o s % i ' f ) ~  = S(A ) f ~ .  (15) 
S(A) is called the on-shell S-matrix at energy A.  It is useful to define also R = S-I .  
Clearly R also commutes with Ho, so that 

(QORQi'f ) A  =R(A)f,, with R(A) = S(A)-Io'; (16) 
wherelo is the identityoperator in X o  (Amrein etal 1977 5 5.7). ( -2r i ) - 'R(A) isoften 
called the T-matrix. 

To relate the S-operator to the scattering cross section, one considers the scattering 
of a beam of uncorrelated particles by the potential V, (see Amrein et a1 1977 (j 7.3). 
The beam is mathematically described as an ensemble of states {g.}. For this one starts 
from a fixed state g which is assumed to be a wave packet with almost sharp momentum 
ko. The states of the ensemble {g.} are obtained by a translation of g in the impact 
parameter plane (the plane orthogonal to ko)  by a vector a E R2 and by choosing a 
uniform distribution of the values of a over this plane. For a given fixed cone C in 

.: In perhaps more familiar language, if R(A) is an integral operator with kernel R(A; w, U ' ) ,  then the 
scattering operator S has kernel S(k - k' )  + 2 k  - ' R ( h  ; w, w')S(k2 - k j 2 )  in momentum space with respect to 
the measure d3k'. 
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configuration space with apex at the origin, the cross section for scattering into C is then 
defined as the quotient of the number of particles scattered into C (i.e. the sum over all a 
of the probability that a particle with initial state g, will be observed in C at t = + 0;)) and 
the number of points a in a unit square of R’. 

The derivation of a reasonable expression for the cross section involves the 
following two points: (i) Let ~ E L ’ ( R ~ )  be any state and assume that scattering is 
initiated in the state f. Then the probability that at time t = + cc the particle be localised 
in a cone C in configuration space with apex at the origin is the same as the probability 
that the corresponding final state Sf have momentum in C: 

This is the scattering into cones formula (Dollard 1969,1973). It is valid if the range of 
0- is contained in that of fl, (see Amrein et a1 (1977) proposition 7.15) and will be 
generalised in B 5 .  (ii) Let X be an interval containing the energy support of the initial 
state g, i.e. such that gA = 0 for A e X. Assume that for each A E X, R ( A )  is a Hilbert- 
Schmidt operator (see below for properties of Hilbert-Schmidt operators) and that 

Jx A -‘IlR ( A  )Ilfis dA < 00 (18) 

where the Hilbert-Schmidt norm is with respect to Lz(S‘2’) .  Since each Hilbert- 
Schmidt operator in an Lz-space is an integral operator with square-integrable kernel, 
R(A) will have a kernel R(A ; w, a’) such that 

(R(h ) f~ ) (w)  = R(A; 0, w ’ ) f ~ ( o ‘ )  dw‘ (19) 

and 

Under the assumption (18) one can compute explicitly the ensemble average and 
prove that the scattering amplitude for scattering from the initial direction wo into the 
final direction w at energy A is nothing but 

f(A;wo’w)=-2rriA-”2R(A; o , w o ) .  (21) 

The details of this simple proof may be found in B 7.3 of Amrein et a1 (1977). Moreover, 
the total scattering cross section, averaged over all initial directions, is simply given by 
(Amrein et a1 (1977) 5 7.4) 

In Amrein et a1 1977 it is shown by stationary methods that ( T ( A )  is finite and a 
continuous function of A if e.g. V is square-integrable over some ball SM and verifies 
1 V(x)l c (1 + I X [ ) - ’ - ~  ( E  >O) for 1x1 >M. In the next section we give a simple time- 
dependent proof of (18) for potentials verifying essentially the same hypothesis near 
infinity but having almost arbitrary local singularities. 

We now assemble the necessary results- about Hilbert-Schmidt operators. Their 
proofs are quite elementary (e.g. Ringrose 1971, 5 2.4). Let 2 be a separable Hilbert 
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space. The class of all Hilbert-Schmidt operators on %' will be denoted by 9J2(%') or 
simply by 9 2 .  An everywhere-defined bounded linear operator A in X is said to be a 
Hilbert-Schmidt operator if 

where { e k }  is an orthonormal basis of %' (the sum in (23) is the same for each 
orthonormal basis). g2 is itself a Hilbert space with scalar product 

(A, B ) 2  = Tr A"& (A,  B E 9 2 )  (24) 
where Tr denotes the trace in %', i.e. Tr c = &(ek, c e , ) .  11 1 1 ~ ~  is the norm in 9 2 ,  i.e. 

(25) llAllLs = (A, A)2  = Tr A4'A. 

The Schwarz inequality in 9 J 2  means that 

Tr A'"B = (A, B ) z S  [(A, A)2(B, B)2]"* = IIAIIHs~~BIIHs. (26) 

One also has 

llBllHS = l\B'''IIHS (27) 

and 

IIABIIHS llBllHS (28) 
where A is any bounded everywhere-defined linear operator and IlAll is its operator 
norm. 

If {A,,} is a sequence of Hilbert-Schmidt operators converging to A in Hilbert- 
Schmidt norm, i.e. if llAn - A ~ ~ H s  + 0 as n + 00, then A, also converges strongly to A, i.e. 
IIAJ- AA/+ 0 as n + 00 for each f~ X (to see this, it suffices to take a basis in (23) such 
that el =f). 

Finally, if %' = L2(R")  or some other L2-space, then A is a Hilbert-Schmidt operator 
if and only if it is an integral operator with square-integrable kernel. We shall use this in 
momentum space: if 

then 

3. Finiteness of the total cross section 

Given any real p E L2(0, CO) such that IlplI = 1, we can define a linear operator P ( p )  from 
L 2 ( R 3 )  to L2(R3)  by 

a, 

( % o & ) f ) ~  = P O )  Io P ( C L ) ( % O ~ ) ~  dcL. (31) 

The above is an integral of a vector-valued function in LZ(S"'). Such integrals may be 
defined either by approximating Riemann sums (if the integrand is strongly continuous) 
or more generally in terms of the scalar product with a fixed vector in L2(S'2')  (Amrein et 
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a1 (1977) 0 4.4). It is not difficult to see that P ( p )  is the orthogonal projection operator 
onto the subspace of L2(R3) consisting of those f such that has the form of a 
product of p ( A )  with some vector in L2(S'2') .  Such f 'factorise' in momentum space. 

There is a close connection between the Hilbert-Schmidt norm of R P (  p )  (acting in 
L2(W)3) and the Hilbert-Schmidt norms of the R(A) (acting in L2(S'2').) In fact, given an 
orthonormal basis { e k }  of L2(S'2') ,  {%01 ( p ( A ) e k ) }  is an orthonormal basis of the range of 
P(p) ,  so that 

Using (13) and (16) this gives 

Thus, in order to prove (18), we have only to show that R P ( p )  is Hilbert-Schmidt for 
some suitable function p.  Moreover, if we can do this €or a sufficiently wide class of 
functions p we can deduce the finiteness of llR(A)llHs for almost all energies A ,  and 
through (22) the finiteness of the total cross section, for a suitable class of potentials. 

Although it might appear more natural to take p to be, say, the characteristic 
function of some bounded interval, our method of estimating ~ ~ R P ( p ) ~ ~ H s  is such that it is 
often more convenient to take p to be a smooth differentiable function. 

From (6), using the isometry of O,, we have 

R =flTfl-.-I=flf(fl--fl+) 

Hence 

Introducing as in 8 2, equation (1 l), the operator of multiplication in position space by 
some smooth function q5 which vanishes at the singularities of the potential V (i.e. 
according to (1) we have 4(x )  = 0 for 1x1 s M ) ,  it follows that 

We take 4 = I if M = 0 in (1). Since 

by using the triangle inequality for norms (Amrein er a1 (1977) proposition 4.12), we 
have 

(For p decreasing sufficiently rapidly as A + a, one has range ( P ( p ) )  E D(HO). Moreover 
we take D ( H )  sufficiently large that q5D(H0) C_ D ( H ) ,  which is possible under the 
hypothesis (11, (Pearson 1975b). For more general p, one may proceed formally and 
justify the final results by a limiting argument.) 

If the integral on the RHS of (37) is convergent, then (i) we have 
I," dA A (p (A  ) ) * @ ( A )  < CO, so that @ ( A )  is finite for almost all A in the support of p ;  (ii) by 
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considering the integral over the positive and negative real line respectively, we may 
deduce (see Amrein et af (19771, proposition 4.13) the convergence of (V?r$V,- 
4 ) P ( p )  to (a, - 4)P(p)  in Hilbert-Schmidt norm. In particular the wave operators 
exist (as strong limits) on the range of P(p ) .  If the ranges of the P ( p )  (for various p )  span 
a dense subset of L2(R3) we can deduce (see Amrein et a1 (1977) proposition 2.17) the 
existence of 0, on L2(R3). (For this we need the p to span a dense subset of L2(0, CO), 

which will hold if ,  e.g., p can be any infinitely-differentiable function with compact 
support in (0, CO).) 

It remains, then, to estimate integrals of the type (371, and to do  this we rely on the 
following. 

Lemma 1.  Let p ( A )  be a smooth function vanishing in a neighbourhood of A = 0, and let 
W be an operator of multiplication in position space by some real function W(x). Then 

(i1 

(ii) 

d 
dh 

A - l l 4 p  E L2(0, CO), - (A 'l4p) E L2(0, CO), (1  + 1x1) w E L2(R3) 3 

Proof. Taking adjoints, we have I/wurP(p)llHS = IIP(p)U:' W~(HS. Now in momentum 
space UT W is an integral operator having kernel ( 2 ~ ) - ~ / ~  exp(ik2t) Lf'(k - k' ) .  Using 
(12) and (31) we find that P(p)UT W is an integral operator with kernel 

( ~ T ) - ~ / ~ A  - ' "p (A)  dF ~ I ' ~ p ( k )  eiwrLf'(Jww - k') 

1 1 /2  where k = JAU. Writing d3k = k 2  dk dw = T A  dA dw and using llpIl= 1, we can 
evaluate the Hilbert-Schmidt norm, and changing finally the integration variable from 
w to A gives 

In (i) of the lemma, Parseval's identity gives 
5 

dt  11 WUrP(p)/l2HS = 1 ( 2 ~ ) - '  I dh d w  d3k'lA 1/4p(A) ~ ' ( J A u  - k')I2, (41) 
-5 

and (38) follows if we first carry out the integration d3k'. 

lom dA A ' / ' p ( A )  e'"' Lf'(JAw - k' 

For (ii) of the lemma, first integrate by parts in (40), giving 

d . m  =; 1 lo dh eiAr{ G [A 
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In the second term of the RHS we can write d/dA = $A - ‘ I 2  dldk and 

with 

d 
=t(2n)-2J dA dw d3k’l-(A’’4p(A))@(J~ dA -k’) 

2 --A-1’4p(A)@U(JA~-k’)l  i . 
2 (43) 

Integrating first d3k’ and using the identity (a, b real) 

b2 
3 

I dw \la W + ibWJ2 = 47r(a211 W1I2 +- 1 1  1x1 Wll’), 

(39) follows and the lemma is proven. 0 

Remark 1. The integration by parts, with zero boundary contribution from A = CO, may 
be justified rigorously e.g. for the ‘cut-off’ function xSm W which has support in the ball 
1x1 d m. (In that case the Fourier transform is infinitely differentiable and bounded.) 
Equation (39) may then be extended to general W by letting the cut-off radius m tend to 
infinity. 

Remark 2. Since both U, andP(p)  are rotation invariant, it follows that 11 WVrP(p)llhs = 
)I Wro,UrP(p)II&s, where W,,, is obtained from W by rotation about some axis through 
the origin. If we now average over such rotations we see that IIWUrP(p)Jlhs= 
/I WsUrP(p)lJhs, where now Ws(lxl) is a spherically symmetric function defined by 
Wf = (47r-l W2 dw. So in the proof of lemma 1 we could have assumed spherical 
symmetry without loss of generality. 

Remark 3. Because of the term dp/dA on the RHS, the integral in (39) will diverge in the 
limiting case where p is the characteristic function of a finite interval. This is purely a 
consequence of our method of estimation, and once we have proved the convergence of 
the integral in (33) for some suitable set of smooth functions p the integral will also 
converge for characteristic functions. 

In order to estimate the contribution in (37) of the commutator of H, with 4 we 
need also to consider 11 WP. nVrP(p)llHs, where P is the momentum operator and n is a 
fixed unit vector. In that case the corresponding equation to (40) has a factor A ‘”U. n 
in the integrand with respect to A .  For fixed a,  b, one may verify that 

47r 
(U. a)’(w. b)’ dw = - ( l ~ l ’ / b 1 ~  + 2/a. bI2). 

15 (44) 
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(Alternatively, use the obvious bound 47rl~1~161* for this integral if no exact expression 
is required). Hence one obtains 

d 
dA 
- (A3l4p) E ~ ~ ( 0 ,  CO), (1 + i x l )  w E rs (ii) A ’l4p E L2(0,  CO), 

In (371, let us now write 

H4 - 4 Ho = V4 + 1. Ho, 4 I = V4 - ( A 4  ) - 2 i (V4 ) . P (47) 

where, e.g., A 4  refers to the operator of multiplication by (At$ )(x). Then lemmas 1 and 
2 may already be used to prove finiteness of the total cross section for potentials V 
satisfying 

For such a potential, let W = -At$ + V4, and choose p suitably. Then (38) and (39) 
imply 

and 

(Note that A 4  has compact support.) Hence 

so that by Schwarz’s inequality we find 
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Similarly, taking W = a4/ax, and n the unit vector along the k'th coordinate axis, 
lemma 2 may be used to show that 

X 

dt Il(v4) . P U t P ( p ) I l ~ ~  < 00 J-, 
so that the integral on the RHS of (37) is convergent, and we have proved finiteness of the 
total cross section for this class of potentials at almost all energies. (The class of 
permissible functions p is quite large and certainly includes infinitely differentiable 
functions having compact support in (0, CO).) 

The conditions here imposed on the potential would not allow V to decay at infinity 
more slowly than / x / - ~ / ~ .  We know, however, that the cross section should be finite with 
a decay like  XI-^-' ( E  > O ) ,  and to prove this we shall need the rather more refined 
estimates given by: 

Lemma 3. Let p satisfy the conditions of ( i )  and (ii) in lemma 1 ,  and suppose that 
( 1  + / x / ) ' + ' W E L ~ ( R ~ )  for some E B O .  Then there exist 6 > O  and c ( p ) > O  such that 

dt ( 1  + / t / ) * ' S I I W U , P ( p ) ~ l ~ s ~ c ( p ) ~ ~ ( l  +lxl)++'Wj12. 
m 

(50) J-, 
Proof. Let WO E L2 (R3), and define 

Then lemma 1 implies 

and 

where c l ( p ) ,  c 2 ( p )  may be calculated explicitly from (38) and (39). Now by equations 
(25)-(27), 

and 
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we can deduce, by Schwarz's inequality, 
cc I-, dt (1 + l t l )(ptqi '2(G,a+p,:2(~))2 

Applying (57) to (52) and (53) with a = 0, /3 = 1, p = 0, q = 2, we have 

dt (1 + Itl)(G:(t))2 S (CIC~)' /~IIWOII~. 
X 

I, 
Applying (57) to (53) and (58) gives 

m 
1/4  3/4 d t  (1 + ltl)l+i(G$+$ ( t ) ) 'S  c c2 /IWO1l2. (59) 

We can now combine this inequality with (58) and continue in this way, to obtain 

with ln =+-2-'-l, 
2-"-' < E, we have in that case GI  + e  s G ; + 2  - n  1, so that with S = 2-" (60) implies 

=$+2-'- l  and n = 1 , 2 , 3 , .  . . , Taking n sufficiently large that 

Equation (50) now follows on writing WO = (1 + \xl)'+'W. 

c l ( p ) ,  c2 (p )  are the constants appearing in (52), (53). 0 
Note that, if E = 2 - n - 1 ,  we can take 6 = 2 ~ ,  in which case in (50) c = c!- 'c~+',  where 

By analogy with lemma 2 we also have: 

Lemma 4 .  Let p satisfy the conditions of (i) and (ii) in lemma 2, and suppose that 
(1 + Ixi);+'W E L2(rW3) for some E > 0. Then there exist S > 0 and c ' ( p )  > 0 such that 

(62 )  
r 

dt (1 +Itl)lt*lIWP. nU,P(p ) l l~s~c ' (p ) l l ( l  + l~ l )~+ 'Wl/2 .  
-00 

Proof. Let WO E L2(R3), and define 
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Now proceed as in the proof of lemma 3. Note that in this case with E = 2-'-l, S = 2 ~ ,  
we have c ' =  ( C ; ) ' - ~ ( C ; ) ' + ~ .  0 

We are now ready to state a result which implies in particular the finiteness of the 
total cross section for potentials behaving at large distances like (1 + ]XI)-*-', but with 
arbitrary local singularities. 

Theorem 1 .  Suppose the potential V satisfies (1) with U = $ + E  for some it4 - ' 0  and 
E >O.  Then the wave operators Cl, exist, and @ ( A )  is finite for almost all A.  

(Remark. To be precise, one should assert the finiteness of llR(A)llks for almost all A 
rather than that of @ ( A ) .  As pointed out in 9: 2, the identification of @ ( A )  with 
T A - ~ ~ ~ R ( A ) ~ ~ ~ ~  requires the validity of the scattering into cones formula, the proof of 
which needs a hypothesis on the location of the singularities of V in the region 1x1 s M. 
This point will be taken up in 8 5.4.) 

Proof. (cf argument following lemma 2). We have only to estimate the RHS of (37), using 
(47). From (50) of lemma 3, 

.m 

so that 

In the same way, the contribution to the RHS of (37j of the (V4. P) term in (47) may 
be estimated using (62). Hence from (37) we can deduce I1RP(p)ll~s<w. The 
conclusions of the theorem now follow, since the class of permissible functions p is 
sufficiently wide for the ranges of the P(p)'s to generate the entire Hilbert space. 0 

4. Bounds on the cross section and high-energy behaviour 

The estimates that we have derived in 8 3 to prove finiteness of @ ( A )  may at the same 
time be used to obtain precise upper bounds. These are not pointwise bounds, but 
rather bounds on some integral of the cross section over some range of energies; they 
may be used for example, to give an explicit upper bound, for a given potential, to the 
average cross section over some given finite range of energies. 

Consider first the case of a potential satisfying 

for some E > 0 (referred to below as the non-singular case). By a straightforward 
application of our estimates, using the method of interpolation of lemma 3, we find the 
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following bound: 

where 

and 0 < E s 4. We emphasise that in (67) we have made no attempt to obtain the optimal 
function A, ( p ) .  In deriving (67) we have actually assumed that r is some integral 
multiple of 2-”-’ for some positive integer n ;  this assumption has no practical 
significance. 

Notice that it is inherent in our method of estimation that, although the LHS of (66) is 
invariant under translations V ( x )  + V ( x  + a ) ,  the RHS is not. Therefore in applying 
(66), a suitable choice of origin in position space must be made. Both sides of (66) are, 
however, invariant under rotations about the origin. 

In the case of a potential which may be singular in some finite rtgion 1x1 M, but 
whiFh satisfies (1) for some o > f ,  we have to estimate ~ ~ ( l + ~ ~ ~ ) ~ + ‘ A 4 ~ \  and 11(1+ 
Ixl)’“Vr$ll where C#J is the function appearing in (37). A simple choice is to take 
C#J(x)=f( lxI/M) if M 2 1  and 4 ( x ) = f ( l x l )  if M s l ,  where f(r)  is a smooth non- 
decreasing function satisfyingf(r) = 0 for 0 s r s 1 andf(r) = 1 for r 2 2. In this case we 
find from lemmas 3 and 4, for this class of singular potentials, 

s A,(p)II(1+ Ixl)”‘x[~,Oo) VI12 +A,(p)(Ai + BiM”) 

+A,n(A 1/2p)(A2+B2M2+Y) (68) 

where A I ,  B1, A2, B2 are constants (depending on the choice o f f ) ,  A,(p) (and hence 
A,(A ‘ l 2 p ) )  is given again by (67), Y is any number in (0, $1 and x [ M , ~ )  is the characteristic 
function of the region 1x1 2 M. Again we regard (68) as a rather crude estimate. 
However, interesting conclusions can already be drawn from (66) and (68). 

Observe that, for potentials V of finite range which have support contained in the 
region 1x1 < M, the bound (68) is independent of the potential (and, in particular, of the 
coupling constant) but, for given p ( A ) ,  depends only on M. For large M the bound is 
like M’+’, where v may be taken arbitrarily small (classically one has r M 2 . )  For small 
M, the bound does nor vanish in the limit as M + 0. In fact the bound cannot vanish in 
the limit M + 0, since there are potentials with arbitrarily small support for which the 
cross section is bounded away from zero (Newton 1966 9: 14.1). 

The preceding result may also be applied in the opposite way by remarking that, 
given the size of the cross section, one may deduce a lower bound on the range M of the 
interaction. An optical determination of this lower bound would require a special 
analysis of the bounds of 9: 3 by varying the functions p and 4. The result also justifies to 
some extent the classical picture that the total cross section is a measure of the size of the 
region of interaction in relative coordinates between the two colliding particles. In this 
context it is interesting to remark that the finiteness of the total cross section is quite 
independent of the explicit form of the free Hamiltonian but depends only on V (see 
also Martin and Misra 1973). Ho may for instance be any increasing function of P2.  If V 
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verifies (65), then one obtains a bound of the form (66), with A , ( p )  given by an 
expression similar to (67), see ii 5.1. The dependence of the bound on Ho appears only 
in the explicit form of A,(p). 

We may also use (66) and (68) to estimate the high-energy behaviour of the cross 
sections. Giving p ( A )  a simple power behaviour as A + CO we easily find that, for A. > 0 
and any 8 > 0, 

<CO A ;+e 

in the non-singular case, and 

in the singular case. This suggests that local singularities may have an effect on the 
high-energy behaviour of cross sections, which may decay to zero more slowly than in 
the non-singular case, or even not tend to zero. However, (69) does not give the best 
known results, since @ ( A )  should decay in this case like 1 / A  (Amrein er a1 1977, chapter 
12) whereas (69) corresponds to a decay roughly like A 

It seems worthwhile, therefore, to extend some of our results to obtain something 
near the 'best possible' high-energy behaviour of cross sections. It will be convenient to 
introduce the notation, for W E  L2(R3), 

lllWlIl2e= ll(1 + lk/)'-8~(k)l12+II(1 +lkl,~-"~(k,il'+lIcl + J k l ~ ' - " v ~ l ( k ) j l 1 2  (70) 

where 8 > O ,  W l ( x )  = ( 1   XI)-^ W ( x )  and V denotes differentiation with respect to the 
components of k, so that n . V W ( k )  is just the Fourier transform of - i(n . x)  W ( x ) .  

( E  > 0) .  

Our high-energy estimates of cross sections are based on: 

Lemma 5. Let p be a smooth function vanishing near A = 0 and satisfying p ( A )  = A - l i + ' )  

for large A ,  with E > 0. Suppose 111 Wllle <CO for all 8 > 0. Then for some 6 > 0, 0 > 0 

03 

dt  t211(Ho + l)$-' W1 UrP(p)llLs c const.111 Wlili I-, (iii) 

with W1 given as above. 

Proof. (i) Following the derivation of (41) we have 
m 

dtl((H0 + l)-a'sWUJ'(p)ll~s 

(73) 
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on writing A = k2,  dA dw = 2 k - ~ '  d3k. Making the change of variable k' = k - k" we 
have 

d2k d3k" (p(k2))'l @(kf')I2((k - k")2 + l)-ft2S. 1 
(74) 

We may divide the region of integration with respect to k into two regions, respectively 
{ ~ k - k " ~ > ~ ~ k l }  and {lk-k"l<$lkl}.  

Over the first of ,these regions, our assumptions on p ( A )  imply that 
d3k(p(k2])2((ilkl)2 + 1) -2t2'< CC provided S < E ,  in which case the double integral in 

(74) is bounded by const.l/WlI2. In the second of these regions, jkl>flk"l, so that 
(p(k2))2 = O(/k"~-'2'4" ). Moreover, the integration region over k has volume O(1k"/3), 
so that the integral d3k is O(~k' f / ' -4c )  as 1k"l -+a, and (71) holds with 6 = 26. 

( i i )  In order to prove (721, let us write, following (401, 

dt  ltl-'II(Ho+ l)- i-SWUfP(p)ll~s 
+ I  

We carry out first the integration with respect to r, thus making use of the identity: 

in the case f ( A )  = A ' I 4 p ( A )  @(JAa - k'). (76) holds, for q 3 0, f~ L2(R), provided the 
RHS is absolutely convergent, as we shall show in this case. (Note that in proving (i) we 
have shown f € L 2  for almost all k' and a.) Here q ' ( A )  is the Fourier transform of 
,y(t)ltl-', where ,y is the characteristic function of the interval [ - 1, 13. It is not difficult 
to show, e.g. by a change of integration variable z = At ,  that 

whereas $ ( A )  is locally bounded. 

leads to the bound 
After integrating with respect to t, an application of Schwarz's inequality to (75) 

The two factors are identical (on interchanging A ,  p ) .  We next integrate over p in the 
first factor. For this we divide the integration region with respect to p into the two 
regions {lp - A I a + A }  and {lp - A  1 d $A }. In  the first region we also have Ip - A 1 2 ip, so 
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that from (77) we have: 

const. const. 

for any @ > 0. 
Since j d p  p1'2p(e)2(l  +$p)f '2'-0 < 03, the integral over the first region is boun- 

ded by const.(l + ~ A ) - 5 - 2 ' c * + B  . In the second region, $A s p S $A, and the p integration 
is bounded by 

which is O(A -f-2'+s ) as A + 03. We have, then, finally to estimate 

But this is precisely the estimate we have already made in proving (71) above, except 
that now we must take (p(A)) '  = A-1-2'+*+8 for large A. We find that (72) holds, with 
s<$E, if 8 < 2 € - s .  

(iii) Following the derivation of (43), we have 

dt I I (H0-t  1)'-*Wi~J'(p)II&s 
m 

sconst .  dA dw d3k' IA-1/4p(A)@1.,(JAw -k')12(k'2+ l)t-26 
d 2 

J 
+const. 1 dA dw d3k' 1 -(A1/4p(A))@l(JAo-k')l dA (k'2+l)f-2S.  

Following the same arguments as at the beginning of (i), and making use of the 
inequality (Amrein et a1 (1977), lemma 16.12) 

((k -k't)2+ <const.(k'+ ,)+-2s(k''2+ 1) f -z~  

in the equation replacing (74), we readily find that (73) holds with 8 = 28. 0 

Remark. In lemma 5 ,  one may for instance take S = $E, 

constants appearing in (71)-(73) depend only on p. 
= E, in which case the 

Following the derivation of (58)  we can use (72) and (73) to show that 

where Ga(t) and WO are defined as in the proof of lemma 3 and we retain the 
assumption p ( ~ )  = A -(1'2+a) for large A. An application of Schwarz's inequality now 
gives: 
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so that certainly 
r 1  

for any E '  > 0. 
Following again the derivation of (58 )  we can use (71) and (73) to show that 

dt lrl(G1/2(t))' s const.111 W~lll;. 

m 

dt  t 2 ( G l ( t ) ) 2  sconst.111 Wolll;. I_, 
Following the derivation of (61) we can use ( 8 2 )  and (83) to show that 

m 

dt Itl"b(G;+.t(t))2 s const.l// Wolll', 

where E '  is an integral multiple of 2-"-' for some positive integer n and 6 = 26'. An 
application of Schwarz's inequality now gives: 

and combining this result with (81) we now have: 
W 

dt lG:+,)(t)l sconst.lll\Vollle. I_, 
In other words, 

m 

III(1+ IxI)"" VIIIe < + I dt  II VUtP(P)IIHS < 
-W 

and we can state: 

Theorem 2. Suppose the potential V satisfies 111(1+ Ix/)""VlIle < 00 for some E '  > 0 
(strictly for E '  = m2-"-')  and for all 0 > 0, where 111 - llle is given by (70). Then, for all 
E > 0, and 0 sufficiently small, 

Remark. For W E  L2(R3), the finiteness of )/I Wllle imposes a bound on the behaviour of 
@(k) for large Ikl. It may be checked that theorem 2 applies to potentials which are not 
too singular (e.g. the Yukawa potential) and which tend to zero as 1x1 + more rapidly 
than lx\-'-', for some E > 0. 

For potentials having arbitrary local singularities we have also to estimate in (37) the 
contributions from 4. The corresponding result to lemma 5 in that case, with p ( A )  = 
A-"+'), follows in exactly the same way, with WUr, WIUr in (71)-(73) replaced by 
WP. nut,  WIP. nU, respectively. We then have: 
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Theorem 3. Suppose the potential V satisfies lllx~M,,,,,(l+ I X ~ ) ~ ' ' ' V ~ I ~ O  <CO for some 
E '  > 0 and all 0 > 0, where x [ ~ , ~ )  is the characteristic function of the region 1x1 > M. 
Then, for all E > 0, and t9 sufficiently small, 

dA A -'-'@(A) < const.lllxrM,.g)(l + I~l)~"'Vl)l, + F ( M )  < 00. (87) 

A slight improvement of this result is mentioned in 9 5.2. 

5. Generalisations and comments 

5.1. Further results on potential scattering 

Our approach can be applied to the n-dimensional Schrodinger equation. The hypo- 
thesis on the potential V remains as equation (1) with U >$, where the integral i s  in R" 
instead of R3. It essentially means that V ( x )  must tend to zero faster than r-q(n+''-' 
( E  > 0)  as r + W. Our estimates imply the existence of the wave operators and the 
finiteness of I1R (A) / IHS  for almost all A. Similarly one may prove the existence of R, and 
the finiteness of J1R (A)/IHS for certain momentum-dependent potentials (for other 
proofs of the existence of 0, in thiscase, see Schechter 1976, Berthier and Collet 1977). 
A special case of particular importance is that of spin-orbit interactions (van Winter 
and Brascamp 1968 and Amrein et a1 (1977) 0 11.2). 

Another important application is to N-body potential scattering for which rigorous 
stationary results are very scarce. Our method leads to the finiteness of the total cross 
section C ? ~ - ~ ( A )  and to bounds similar to those of $ 4  for scattering from a two-body 
initial channel CY to any final channel p, provided that the pair potentials verify equation 
(1) and that their singularities are positive. The details are given in a separate report 
(Amrein et a1 1979). 

For potentials that decrease to zero more slowly than r-',  @ ( A )  is in general infinite 
(Villarroel1970). Under suitable assumptions on the derivatives of V, one can however 
prove finiteness of the cross section for scattering into any closed cone not containing 
the forward direction. This question will be dealt with in a forthcoming paper. 

As pointed out in $ 4, the class of potentials satisfying (65) leads to a finite total cross 
section for other free Hamiltonians that are functions of P 2 .  In fact we have: 

Theorem 4 .  Let  { A k }  be a finite or countable family of disjoint open intervals such that 
[O,  CO) = U&. Let F :  (0, CO) -$ R be an increasing function which is twice differentiable 
on each Ak, and let Ho = F(P') .  Assume V verifies (65), and let H be a self-adjoint 
extension of F ( P 2 )  + V defined on 9 = {flf has compact support}. Then the wave 
operators R, = s -1im exp(iHf) exp( - iHot) as t + f m exist and R ( A  is Hilbert- 
Schmidt for almost all A .  

The hypothesis on F includes for instance the relativistic free Hamiltonian Ho = 
(P2+m2)1 '2 .  If F has jump discontinuities at the end points of hk, one has a free 
Hamiltonian whose spectrum consists of energy bands. Also notice that F may be a 
bounded function. 

Proof. The diagonalisation of Ho is carried out similarly to (12) by setting: 

fA(w)  = 2-"*G(A)f(L(A)w) (88) 
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where G(A) = [F-'("]''4[[F'"-'(A))]-''2, L(A) = [F-'(A)]1'2 and F-' is the inverse 
function of F. (For Ho = P2:  F ( x )  = x, F- ' (x )  = x and F'(x)  = 1, which gives (121.1 

by G(A) and A ' I 2  by L(A) at 
the appropriate places and using k 2  dk = $G(A)2 dA. One obtains: 

The proof of lemma 1 can be repeated, replacing A 

where the support of p should be a subset of some i l k .  One can now use these identities 
to interpolate exactly as in lemma 3 and prove the assertions of the theorem as in 
theorem 1 .  U 

The scattering into cones formula for Hamiltonians of the above type has been 
established by Jauch et a1 (1972).  The relation of the total cross section to R ( A )  is found 
as in Q 7 . 3  of Amrein et a1 (1977) to be: 

(91)  

Though the explicit form of the function F has no effect on the finiteness of @ ( A  1, it 
will influence the high-energy behaviour of the total cross section. For the relativistic 
free Hamiltonian we have F ( x )  = (x + m2)'I2 ,  F - ' ( x )  = x 2  - m 2  and F'(x )  = 
i ( x  + m2)-''2,  and it turns out that all norms involving p in (89) and (90)  are finite if e.g. 
p ( A )  = A-3'2(lg A)-"  for A > 2 m 2 ,  with cy >$. Using this together with (91)  in (33) ,  one 
arrives at the following high-energy bound: 

7r 
@(A 1 = 7 IIR (A  )IIhs, where lkI2 =F- ' (A) .  

lkl 

This is an improvement of the bound of Martin and Misra (1973) which was obtained by 
means of trace methods. Relation (92)  excludes, for instance, a cross section such as 
(lg A )* as A + CO, with S > 0 (choose E = S in (92)  to get a contradiction). It is therefore 
also stronger than the bound of Froissart (1961).  It must be borne in mind, though, that 
the latter is derived from different postulates and is valid under much more general 
circumstances than simply elastic single-channel potential scattering. 

5.2. Further improvement of high-energy bounds 

One can also improve the bounds in 5 4 on the high-energy behaviour of cross sections 
by allowing p ( A )  to decrease as A -1'2(1g A)- '  for large A .  (In that case one must replace 
Itl-' by Ilgltl/" in (72) ,  with q > 1, and introduce a similar factor into (73)  for the 
integration over the interval - 1 < t < 1. One can also take S = 0 throughout.) 

This gives rise to the result: 
m 6, dA * ( A )  (lg A)-*' <a (93)  
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in the non-singular case, and with p ( A )  = A-'(lg A)-' we find 

in the singular case, where p >$in each case. In view of the hope (Frank eta1 1971) that 
scattering theory with singular potentials should in some ways serve as a model of field 
theory, it is interesting that the second bound compares very closely with the Froissart 
bound ? ( A )  = O((1g A)'). 

5.3. Bounds on the Born approximation 

If a',"' denotes the Born approximation to the wave operators in the case of a 
non-singular potential, equation (35) implies 

m 

(a',"' - i2YB')P(p) = i I dt  (UT VU,)P(p). 
-m 

(95) 

It follows that, in this case, all of our estimates apply equally well to the Born 
approximation to the cross section as to the cross section itself. 

5.4. Scattering into cones for singular potentials 

The scattering-into-cones formula (17) is proved in Amrein et a1 (1977) under the 
hypothesis that L X G  a+%. This condition is satisfied if the theory is asymptotically 
complete, i.e. if 0-R = a+% = Xa,(H)  (the subspace of absolute continuity of H, which 
in many instances is equal to the orthogonal complement of the set of all eigenvectors of 
H). Asymptotic completeness is known to hold for non-singular potentials ( E n s  1978 
or Amrein et a1 (1977) chapters 9 and 10) as well as for a large class of singular 
potentials (see Amrein et a1 (1977) p 387 for references). An example of a potential 
that is singular at the origin and violates the condition C % G ~ + %  was given by 
Pearson (1975a). A generalised theory of asymptotic completeness was then developed 
in Pearson (1975b). Assume that the singularities of V are restricted to a closed 
bounded subset N of R3 of Lebesgue measure zero, i.e. 

for all closed subsets C of the complement R3\N of N. Then Pearson (1975b) proves 
that each g E X&Y) which is orthogonal to f2+X has the property that 

lim J d3x I( Vtg)(x)12 = 0 
r-cm x 

(97) 

where X is as above. In other words, states in the (absolutely) continuous subspace of H 
that are orthogonal to all outgoing states have the property of being completely 
attracted by the singularities (i.e. localised in an arbitrarily small neighbourhood of N )  
as t -+ +a. 

This result allows us to generalise the scattering-into-cones formula to singular 
potentials satisfying (96). Let SM be a ball in R3 containing N in its interior, S L  = R3\SM 
its complement. Let C be a cone with apex at the origin, and set CM = C f l  SL. Let 
f~ 2 be an arbitrary initial state. Then the probability P( f, CM) that the corresponding 
scattering state V J - f  be localised in CM at t = + 00 is the same as the probability that 
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the momentum of the outgoing part Sf= nTkf of the final state lies in C :  

~ ( f ,  c M ) =  lim d3x /(v,n-f)(x)J2= Jcd3k /$)(k) l2 .  (98) 

For the proof, one sets n-f = g + h with g = f2,nTn-f. g is the projection of n-f 
onto the subspace fl+% (the outgoing part of f2-f) and h is orthogonal to this subspace 
(the absorbed part of a-f (Amrein et a1 1977 (5 4.61.) Now equation (97) with = CM 
implies that 

I-+m JcM 

lim J d3x l(V,h)(x)I2 = 0. 
t-+m CM 

Thus 

d3x I(VJ2+flTfl-f)(~)1~ 

d3x I(UrSf)(x)I2 = lim 1 d3x I(UrSf)(x)12 
r-+m c 

= k d 3 k  l($)(k)I2. 

The second identity follows from the definition of the wave operator, the third one from 
the fact that, under the free evolution U,, all states are propagating to infinity, i.e. from 
equation (9), and the last identity is a simple property of the free evolution group 
(equation (3.51) of Amrein et a1 (1977)). 

Once this generalised scattering-into-cones formula is established, we may assert 
the finiteness of 6 ( A )  for almost all A under the hypothesis that: 

for some U > 5 and all closed subsets 2 of R3\N. 
If V has a hard core (say V ( x )  = +CO for 1x1 G M ) ,  is non-singular on SL and verifies 

(l), then one obtains similarly that 5 ( A ) < 0 0  for almost all A by using the scattering 
theory for hard core potentials developed by Hunziker (1967) and the fact that there is 
no absorption (Amrein and Georgescu 1973). 

Acknowledgments 

We are indebted to Kalyan Sinha for helpful comments and suggestions on this work. 
One of us (DBP) wishes to express his appreciation of the kind hospitality shown by the 
Department of Theoretical Physics of the University of Geneva and to thank the 
University of Hull for granting leave of absence during the summer of 1978. 

References 

Amrein W 0 and Georgescu V 1973 Helv. Phys. Acta 46 635 
Amrein W 0, Jauch J M and Sinha K B 1977 Scattering Theory in Quantum Mechanics (Reading, Mass.: 

Benjamin) 



1492 W 0 Amrein and D B Pearson 

Amrein W 0, Pearson D B and Sinha K B 1979 Nuovo. Cim. A to appear 
Berthier A M and Collet P 1977 I. Funct. Anal. 26 1 
Deift P and Simon B 1976 J.  Funct. Anal. 23 218 
Dollard J D 1969 Comm. Math. Phys. 12 193 
- 1973 J. Math. Phys. 14 708 
Enss V 1977 Comm. Math. Phys. 52 233 
- 1978 Comm. Math. Phys. 6 1  285 
Frank W M, Land D J and Spector R M 1971 Rev. Mod. Phys. 43 36 
Froissart M 1961 Phys. Rev. 123 1053 
Green T A and Lanford 0 E 1960 J. Math. Phys. 1 139 
Hunziker W 1963 Helv. Phys. Acta 36 838 
- 1967 Helv. Phys. Acta 40 1052 
Jauch J M 1958 Helc. Phys. Acta 31 127,661 
Jauch J M, Lavine R and Newton R G 1972 Helu. Phys. Acta 45 220 
Jauch J M and Sinha K B 1972 Helu. Phys. Acta 45 580 
Kupsch J and Sandhas W 1966 Comm. Math. Phys. 2 147 
Martin Ph and Misra B 1973 J.  Math. Phys. 14 997 
- 1974 Scattering Theory in Mathematical Physics ed. J A La Vita and J P Marchand (Dordrecht: Reidel) 

Misra B, Speiser D and Targonski G 1963 Helv. Phys. Acta 36 963 
Newton R G 1966 Scattering Theory of Waves and Particles (New York: McGraw-Hill) 
Pearson D B 1975a Cotnm. Math. Phys. 40 125 
- 1975b Helc. Phys. Acta 48 639 
Ringrose J R 1971 Compact Non-self-Adjoint Operators (London: van Nostrand) 
Schechter M 1976 J .  Math. Oxford Ser. (2) 27 111 
Simon B 1977 Comm. Math. Phys. 55 259 
- 1978 Comm. Math. Phys. 58 205 
Sinha K B 1977 Ann. Inst. Henri Poincari A 26 263 
Villarroel D 1970 Nuoco Cim. A 70 175 
van Winter C and Brascamp H J 1968 Comm. Math. Phys. 11 19 

pp 173-92 


